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SOME SPECTRAL APPROXIMATIONS 
OF TWO-DIMENSIONAL FOURTH-ORDER PROBLEMS 

CHRISTINE BERNARDI, GIUSEPPE COPPOLETTA, AND YVON MADAY 

ABSTRACT. This paper deals with the approximation of the biharmonic equation 
in a square domain with Dirichlet boundary conditions. Two types of discrete 
problems are presented, the numerical analysis is performed, and estimates for 
the error between the exact and approximate solutions are given. 

1. INTRODUCTION 

We are interested in the spectral discretization of the following biharmonic 
equation: 

(1.1) A2u f in Q, 

where Q is a square domain, when it is provided with Dirichlet boundary 
conditions, i.e., the values of u and of its normal derivative are prescribed on 
the whole boundary of the domain. This equation is known as the plate problem. 
As another important application of our results, we quote the Stokes equations 
which govern the flow of a stationary incompressible viscous fluid: indeed, the 
incompressibility condition is equivalent to the existence of a stream functioff 
which, in the two-dimensional case, is a solution of problem (1.1). Using this 
formulation allows for satisfying exactly the incompressibility equation while 
avoiding the drawback of spurious modes on the pressure (we refer to [5] for 
a review of spectral methods for the Stokes problem in the primitive variables 
of velocity and pressure). This leads to a low-cost discretization, since only one 
scalar unknown is computed, and the velocity can easily be recovered from the 
stream function by a standard spectral derivation process. The method can be 
extended to handle the nonlinear terms of the full Navier-Stokes equations in 
a natural way. 

The discretizations which we propose for problem (1 .1) are of spectral type, 
i.e., the approximate solution is sought in a finite-dimensional space of polyno- 
mials of high degree. This space seems especially appropriate to treat high-order 
problems, since it consists of infinitely differentiable functions, in contrast to 
finite element discrete spaces (this property has already been used in the case 
of Fourier series, see, e.g., [16, 11]). We propose here two kinds of spectral 
discretizations. The first method is of collocation type, which means that equa- 
tion (1.1) is enforced in a finite number of points, called collocation points, 
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which form a tensorized grid. In each direction, the coordinates of these points 
are chosen as the nodes of a one-dimensional quadrature formula, so that a 
variational formulation of the discrete problem can be derived in a natural way 
and the Lagrange interpolation operator in the points of the grid has optimal 
approximation properties. Consequently, the nodes are the zeros of one of the 
derivatives of a Legendre polynomial. In order to use the most accurate quadra- 
ture formula, while taking the boundary conditions into account, we construct 
the collocation nodes from a generalized Gauss-type formula which was studied 
in detail in [2]. The second method is no longer a pure collocation method, 
but still involves quadrature formulas of the same type. The numerical analysis 
of the discrete problem proves that the approximation has an infinite order of 
accuracy for smooth solutions. Numerical tests, performed by Koutchmy [12], 
are in complete agreement with the results of this paper. 

Only for the sake of brevity, the analysis will be presented for two-dimensional 
domains and homogeneous boundary conditions: the extension to the case of a 
cube is straightforward, the complete analysis for inhomogeneous conditions is 
given in [1]. Modified discrete problems can be derived by replacing the Leg- 
endre polynomials by Jacobi ones in the definition of the quadrature formulas; 
we also refer to [1, Appendix] for details. 

The outline of the paper is as follows. Some basic notation concerning the 
continuous problem and the polynomial approximation are given in ?2. In ?3, 
we propose a collocation method and give a bound for the error between the 
exact and discrete solutions. However, this error is not of optimal order; that 
is why we propose in ?4 another discretization which is no longer of collocation 
type but leads to optimal error estimates. Conclusions are given in ?5. 

2. NOTATION AND BASIC RESULTS 

The domain Q is the open square A2, where A stands for the interval 
(-1, 1). The generic point in Q is written x = (x, y). We denote by Fj, 
J = 1, 2, 3, 4, the four edges of the square, starting from the west and turning 
counterclockwise. The extremities of the edge Fj are the corners aji, and aj 
(with the conventional notation ao = a4) , while nj stands for the unit outward 
normal to Fj (with also n5 = n1) and Fj for the unit vector orthogonal to 
nj, turning counterclockwise. 

2.1. The continuous problem. 

Notation. For any bounded domain a of Rd with a Lipschitz-continuous 
boundary, we associate with each positive integer m the Sobolev space Hm (&) 
of all functions in L 2(&) such that their partial derivatives of order < m be- 
long to L2(&) . It is provided with the usual norm I I IIm, &. The closure of 
the space of infinitely differentiable functions with a compact support in a is 
denoted by Hom(&), and its dual space by H-m(&); the duality pairing is de- 
noted by the symbol ( , * ) . We recall that the usual seminorm I Im , is a 
norm on Hom (&), equivalent to the norm I IIm, , and we denote by I *J IJ-m , 
the corresponding norm on H-m(r). For any nonnegative real number s, 
the space Hs(r) is defined by Hilbert interpolation of index [s] + 1 - s be- 
tween H[s]+l (a) and H[s] (&) (where [s] stands for the integral part of s); it 
is provided with the norm II a IL, v. We refer to [13] for properties of Sobolev 
spaces. 
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For given data f, we are interested in the approximation of the following 
fourth-order equation: 

(2.1) A2U=f inQ, 

provided with the Dirichlet boundary conditions 

(2.2) u= =0u = o on Fj, J = 1, 2, 3, 4. 
Oflj 

To write the variational formulation of problem (2.1)-(2.2), we define on 
H2(Q) x H2(Q) the bilinear form 

(2.3) a(u, v) = AuAv dx. 

Thus, problem (2.1)-(2.2) is clearly equivalent to the following one: 

(2.4) find u in H02(Q) such that 

Vv E H02(Q), a(u, v) =(f,v). 

Since the form a( , *) is elliptic on H02(Q), for any f in H-2(Q), problem 
(2.1 )-(2.2) admits a unique solution in H2(Q) . Moreover, this solution satisfies 

(2.5) IIUII22 ?< Cllff1-2,J 

2.2. Polynomial approximation results. 

Notation. For any interval or square domain r, and for any nonnegative integer 
n, Pn (cr') stands for the space of all polynomials on & with degree < n with 
respect to each variable. We denote by PO (&) the subspace Pn (&) n Ho'(&) 
and by POO (&) the subspace Pn(&) n H02(&). 

A basis of the space of all polynomials on A is given by the family of Leg- 
endre polynomials (Ln)n>o: the polynomial Ln, n > 0, is orthogonal to any 
polynomial Lm, m $& n, in L2(A), it has degree n and satisfies Ln(1) = 1. 
We recall [7, ? 1.13] some properties which will be of constant use. Each poly- 
nomial Ln, n > 0, satisfies the differential equation 

(2.6) ((1- 2)L')'(C) + n(n + 1)Ln(0) = 0 

and the integral equation 

(2.7) 2Ln d (Ln+l-Ln-1) n > +1 

where f Ln dO stands for the primitive of Ln which vanishes at I . The 
sequence of polynomials (Ln)n>o is given by the recursion formula 

8(n + ))Ln+l () = (2n + lfLn (C) - nLn- I (C) n> 1 

(2.8) \lLo(4) = 1 and L1(C) = c 

For a fixed positive integer M, we denote by 12H0 the orthogonal projection 
operator from H02(Q) onto PM(Q). We recall the following estimate of the 
approximation error [3], which is valid for any real numbers r and s such that 
0 < r < 2 < s: 

(2.9) V(O E HS(Q) fl Ho2(Q) , Iko f-f H0(IIr4, ? CMr-S l II(IS4 . 
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Let us fix two integers m > 0 and M > mr. We denote by Xm'm, I < 
< M - m, the zeros of the polynomial dmLM/dCm in increasing order. It is 

proved in [2, ?2] that there exist positive weights pjm, '1' < j < M- m, and 
p0m m, 0 < k < m - I, such that the quadrature formula 

f1Q)d~ M-m 

J 1 () dC -E (D(m m)Pj 

(2.10) j=1 

+ E (dS (1 ) + (-1 )kd (1)pM,m, k + ~dC( 7 dCk P+ 

is exact for all polynomials of P2M- 1(A). This formula, which is the cor- 
nerstone of the discretization method, is the Gauss-Lobatto formula with end 
points of multiplicity m. It is studied in [2] in a more general case and an 
efficient way of computing its nodes and weights is described in this paper (see 
also [9]). In what follows, formula (2.10) will be used for m equal to 1, 2, 
and 3. 

We recall that the points ,m, I < j < M- m, are also the nodes of a 
plain Gauss quadrature formula for the measure (1 - C2)m d;. Consequently, it 
follows from [14] that, for m equal to 1, 2, or 3, if iM denotes the Lagrange 
interpolation operator at these nodes (with values in Pm-m- I (A)), the following 
estimate holds for any real number s > 2 and for any function (0 such that 2 
(1 - _2)q' belongs to Hs (A): 

(2.11) 1J(1 _ C2)((p _ im )11o A < cN s1(1 - 2)qIISqA 
Then, denoting by AJ" the Lagrange interpolation operator on the grid made 
of the points (7m,'m m,'m), 1 < j, k < M - m, we derive the following 
estimate by a tensorization argument: for any real number s > 1 and for any 
function f such that (1- x2)(1 - y2)f belongs to Hs(Q), 

(2.12) A(1-<x2)(1 - y2)(f- Af)IIo ? cN 5JJ(1-x2)(1- 2)fII5 Q 

3. THE COLLOCATION METHOD 

This section is divided in two parts: the first contains the statement of the 
discrete problem, the second its numerical analysis. 

3.1. The discrete problem. In order to define the discrete problem, we always 
assume that the function f is continuous on Q. We fix an integer N > 4. 
We consider the points N- 1, 1 ?1< < N- 3, and the weights pN- 1 2, 
1 < j < N - 3, pN- 1 20 and poN-1 2, Iof ?2, which we denote respectively 
by Xj and pj, po and p* for the sake of brevity. Then, we set 

(3.1) 6-.N = (4i Xk) I < j, k < N - 3} 
We also set 

N1{(,J), < j < N- 3}, 

(3.2) 6..JN2 {(4j-1), 1<j?N-3}, 

(3NN3<{(,jj), 1 < jN-3}, 

ZN4={(4j,l), 1?j?N-3}. 
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We now formulate our discrete problem: find UN in PN(Q) such that 

(3.3) 2UN(X) = f(x), X E N, 

and 
OUN 

(3.4) UN(X) = a (X) = 0, XE-CNJ, J = 1, 2, 3, 4, 

uN(aJ)= 
ON (a,) = OnUN (aj) 

(3.5) 

On 

anjUN 
=a UN (aj)=0, J=1,2,3,4. 

OnjOnj+l 

This problem gives rise to a linear system of (N + 1)2 equations in (N + 1)2 
unknowns: indeed, (N+ 1)2 is the dimension of PN(Q), and there are (N- 3)2 
equations at the interior of the domain, plus 2(N - 3) on each edge, plus four 
at each corner. 

In order to write a variational formulation of problem (3.3)-(3.5), we define a 
bilinear form ( *, )N: for any functions fo and V/ with continuous derivatives 
on A, we set 

N-3 

(3.6) (sP, VY)N = X, ((j)V'(4j)Pj + (q(-l)y(-1) + ?(o(>(l))po 
j=1 

+ ((q VY)'(- 1) - (q VY (1)) P 

Similarly, we define a bilinear form on 2 I1(Q) x 2 I1(Q) in the following way: 
the quantity (u, V)N, which approximates the integral fQ uv dx, is obtained 
by replacing the integrals with respect to each variable by the discrete formula 
(2.10) applied to the function uv . This is simpler to understand than to write 
out; note, however, that whenever one of the two functions u and v belongs 
to H02(Q), the definition reduces to 

N-3 N-3 

(U, V)N = Z Z U(4j, Xk)V(4j, Xk)PjPk 
j=1 k=i 

Next, we set 

(3.7) aN(u, v) = (A2u, V)N 

Our first result is stated in the following proposition. 

Proposition 3.1. Problem (3.3)-(3.5) is equivalent to the following variational 
problem: 

(3.8) find UN in P?N(Q) such that 
VVN c PON(Q), aN(UN, VN) = (f, VN)NX 

Proof. First, note that conditions (3.4)-(3.5) are equivalent to the fact that UN 
belongs to POO(Q): indeed, on each edge Fj, J = 1, 2, 3, 4, UN is a poly- 
nomial of degree < N, it vanishes in N - 1 points, and its derivative vanishes 
at the two extremities. Second, choosing VN equal to the only polynomial in 
P?N(Q) which is equal to 1 at (4j, Xk) and vanishes at any other point of -N 
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for a fixed pair (j, k), 1 < j, k < N - 3, we see that (3.8) implies (3.3). Con- 
versely, since these polynomials form a basis of POO?(Q), (3.3) implies (3.8). C1 

The following subsection is devoted to the numerical analysis of problem 
(3.8). 

3.2. Numerical analysis. First note that, for any polynomials UN and VN in 
P??(Q), we have 

aN(UN, VN) =04 , VNI + 2 X 4UN + 
4 
UY , VN 

so that the exactness of the quadrature formula (2.10) on P2N-3 (A) gives 

aN(UN, VN) )( 2 (X,*) O N2(X))dx 

(3.9) + 2 K 
aX20;2, VN 

J1 (2 UN a2V )N 

The proof of the continuity and of the ellipticity of the form aN( , *) re- 
quires two lemmas. The first can be found in [1, Lemma 2.3], the proof of the 
second is rather technical and is given in [2, Corollary V.2] in the more general 
case of weighted measures. 

Lemma 3.2. The following inequality holds for any polynomial (ON in PO (A): 

(3.10) ~ ~~~~ I 0, IA < (?N", FPN) N < CII?N' 0 A 

Lemma3.3. Thefollowinginequalityholdsforanypolynomial (ON in P0N0(A): 

(3.11) cN-11 I?9N 112 A < (?PN, FPN)N _< C OkION 11 

We are now in a position to prove the following proposition. 

Proposition 3.4. The form aN(*, *) satisfies the following properties of continu- 
ity: 

(3.12) VUN E PNo(Q), VVN EE PNO(Q), aN(UN, VN) <_ C||UN112 Q2jjVN112jQ, 

and of ellipticity 

(3.13) VUNEPNO(Q), aN(UN, UN) >cN 1IIUN 11. 
Proof. Using (3.9) together with Lemma 3.3, we first deduce that 

aN(N,VN)<_C 
2 UN aO2VN ?2< aOUN 

a v OX2 Oo x n X2 loQ n X20y2 )N 

02 UN a2VN 

Oy2 K2 Oy 

and 

aN(uN, UN) > cN || |+1 0 2UN K 4cUN |N 2 lUN aAruAr uA) OxN 2 n Ox22Oy2' uA + cN 
y1 2 

' 
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To estimate the middle term, we apply Lemma 3.2 in each direction, so that 

04UNy2' VNJ< ?c O2UN 
a 

2VN 
(X20y2 ' )N -11OXOY oQ x OXOY lo Q 

and similarly 

0 4UN 2UN 

OX20Y21 UN)N >cOXOY IO,Q 

Hence, we have proved on the one hand that 

aN(UN, VN) ?< CIIUNI12,Q||VNjII2,Q 

which is the continuity property, and on the other hand that 

Ox 
2 

2 2xy 0y2 
2 

aN(UN, UN) > cN ( 
U 
N2| + 0UN + |2UN oQ 

which is the desired ellipticity property. C1 

The ellipticity property is not optimal, since the ellipticity constant is not 
independent of N. However, this result cannot be improved. Indeed, take the 
function 

UN(X, y) = (X)V(Y), 

where q' is the polynomial (1 - C2)2L""l and where V/ is any polynomial of 

PN2 (A) satisfying 

IIVIIO,A < c and 1V12,A > cN. 

It can be checked [1, Counterproposition 3.5] that 

(3.14) aN(UN, UN)< cN IIUNII 2Q 

Note also that another collocation method is proposed in [8], where the colloca- 
tion grid is built from the nodes of the usual Gauss-Lobatto formula; however a 
similar counterexample proves that, for this method, the constant of ellipticity 
is < cN2. 

The first consequence of Proposition 3.4 is 

Theorem 3.5. For any continuous function f on Q, problem (3.3)-(3.5) has a 

unique solution UN in POO (Qi). 

Another consequence is the abstract error estimate 

IIu - UN112,Q 

(3.15) <cN (VN< 
c ( IUVNI12,0 + SUP (a -aN)(VN, WN)) 

+ sup (f, WN) (f, WN)N 

WN EPoo (Q) IIWNII2,Q 

To estimate the terms on the right-hand side, we make use of properties (2.9) 
and (2.12). 
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Theorem 3.6. Assume that the solution u of problem (2.1)-(2.2) belongs to 
Ha (Q) for a real number a > 2, and that the data f are such that the function 
(1- X2)(1 - y2)f belongs to HP(Q) for a real number p> 1. The following 
error estimate between u and the solution uN ofproblem (3.3)-(3.5) holds: 

(3.16) IJU - UNII2 Q < c(N 3 -> UJJ 1, + N'-PII(1 _ X2)(1 _ y2)f IIP, ) . 
Proof. In (3.15), we choose VN equal to 1H2,0 u, so that (a-aN)(uN, VN) is 
equal to 0 and, by (2.9), 

IIU - VNI12,Q< C N2-,IIUII,Q. 

Moreover, using the exactness of the quadrature formula, we have for any WN 
in PN (Q) , 

(f, wN)-(f, wN)N = (f-gJN-f, WN) 

Recalling [13, Chapter 1, Theorem 1 1.3] that the mapping 

W ~- I (-x 2)-i (I _y2)-1S 

is continuous from H02(Q) into L2(Q), we can write 

(f, WN) - (f, WN)N y< C?(1 --X2)(1 - y2)(f- NJlf)IIoQ|IIWNII2,Q, 

whence, by virtue of (2.12), 

(f, WN) - (f, WN)N < cNPII(1 -X2)(1 _ y2)f IIPjQIIWNII2Q. 

This completes the proof of the theorem. C1 

From a numerical point of view, the L2(Q)-norm of the error is also of great 
interest. The next proposition gives a better bound for this norm. 

Proposition 3.7. If the assumptions of Theorem 3.6 are satisfied, the following 
error estimate between u and the solution UN of problem (3.3)-(3.5) holds: 

(3.17) IIU - UNIIOJQ < c(N1-uIIuII,jQ + N-Pll(1 - x2)(1 _ y2)f IIP,Q). 
Proof. The proof relies on an Aubin-Nitsche duality argument, since we have 

(3.18) |JU - UNIIOJ2 = sup (u - UN, g) 
gEL2(Q) 11gIlOjQ 

For any g in L2(Q), we consider the solution z of the problem 

A 2z = g in Q, 

lz = OzIn = O on 0Q, 

and we have the regularity estimate [10, Theorem 7.2.2.3] (see also the following 
remark) 

(3.19) IIZII4,Q < cJJgJ9o,. 

Next, we compute 

(u - UN, g) = a(u - UN, z) = a(u - UN, Z T- -03Z) 

- (f, HN 3Z) + (f, HN 3Z)N, 
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so that 

(U-UN, g) < C U-UN112 -llz FN-3zII2,S 

+ 1(1 - X2)(1 -_ )(f _N-Nf)jo0,1 

x ( sup 11(I X )l (I 
_ 

y )l ZN110,Q) jjrj2 ? 1 

Applying (3.16), (2.9), and (2.12), together with (3.18) and (3.19), gives the 
result. El 

Remark. By using the techniques of [10, Theorem 7.2.2.3], [4, ?11], it can be 
checked that the mapping f &-* u, where u is the solution of problem (2.1)- 
(2.2), is continuous from HS(Q) into HS+4(Q) for any real number s < so = 
0.739... . This proves the convergence of the solution of the discrete problem 
towards the exact one in the H2(Q)-norm when N tends to +oo, whenever f 
belongs to HP(Q), p > 1: indeed, we have at least the estimates 

(3.20) |IU - UN112j ?< cN-inf{l-739,p-l}If Ilp, 
2IU - UNIIO4, < cN-inf{3.739,P}IIf 1p, 

4. ANOTHER DISCRETIZATION 

Our conclusion in the previous section was that the collocation method is 
simple to formulate and very natural; however the lack of ellipticity of the 
discrete problem leads to nonoptimal error estimates. The aim of this last 
section is to propose another spectral technique to discretize problem (2.1)- 
(2.2), which is no longer of collocation type but leads to optimal estimates 
in any dimension. As before, we first describe the discrete problem and then 
present its numerical analysis. 

4.1. The discrete problem. The idea in constructing the discrete problem relies 
on the variational formulation (2.4) and consists in replacing the integrals which 
appear in this formulation by the quadrature formula (2.10) with M equal to 
N and m equal to either 1 or 3. For any sufficiently smooth functions (0 and y, 
on A, we define the discrete product ((P, VI)N, n by replacing M by N and cD 
by the product uv in the quadrature formula (2. 10). To state the approximation 
of problem (2.1)-(2.2), we also need a discrete scalar product ( , *)N, m on 
g22m-2(Q) x g2m-2(Q2), which we define by replacing each integral in the scalar 
product of L2(Q) by the quadrature formula (2.10). For functions u and v 
which both vanish at +1 together with their first (m - 1)/2 derivatives, this 
can simply be written as: 

N-m N-m 

(4.1) (U, V)N,rm =U(nN mz kN,m)V(C,;nU I:N,m)PN,MPN,M 
j=1 k=i 

Next, we set 

(4.2) aN,mr(u, V) = (AU, AV)N,rm 
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For any continuous function f on Q, the discrete problem is written as 
follows: 

(4 3) find UN in P?N?(Q) such that 

VVN EPO (Q), aN,m(UN, VN)=(, VN)N,m. 

This discrete problem for m = 1 has already been considered in [15], but 
with the zeros of LN replaced by the zeros of the derivative of the Cheby- 
shev polynomial of degree N and the p'Y , 1 < j < N - 1, replaced by the 
corresponding Gauss-Lobatto Chebyshev weights, so that its numerical analy- 
sis requires a variational formulation of the continuous problem in weighted 
Sobolev spaces. 

Remark. Problem (4.3) is no longer a collocation system. Indeed, in the case 
m = 1, the number of interior grid points is no longer equal to the dimension 
of the space of test functions, i.e., it is equal to (N- 1)2 instead of (N - 3)2. 

In the case m = 3, we are going to write the (N - 3)2 equations which are 
satisfied by the values of UN at the nodes (N 3, 3kN 3) 1 < j, k < N-3. For 
this, we choose VN equal to the unique polynomial of P?N?(Q) which vanishes 
in any point of the grid but not in (47' N, 3kN' 3 ). This leads to the equations 

A2 N(,7'3 XN 3) = f(jN3, TN 3) -j( UN -f)(4Nj3 +1) 

(4.4) -Ak(A UN - f)(?, k ' ) 

-)jAk(A2 UN - f)(?l, +1), 

where the symbol + 1 stands for a summation on the value in -1 and the 
value in +1. The Aj, 1 < j < N - 3, can be computed explicitly as func- 
tions of the p7N 3 and ;'3. Hence, problem (4.3) can be interpreted as a 
"quasi-collocation" one. Note also that, in the case m = 3, the associated mass 
matrix is diagonal, which allows for an efficient discretization algorithm for the 
corresponding time-dependent problem. 

4.2. Numerical analysis. In view of the variational formulation of problem 
(4.3), the numerical analysis relies on the continuity and ellipticity of the form 
aN, m (. , * ) . As in ? 3, using the exactness of the quadrature formula and inte- 
grating by parts, we note that, for any polynomials UN and VN in POO?(Q) , 

aN,m(UN, VN)= | X2 
'OX2 

dx 

(4.5) +2J 
1 (1 AN) (a AN) dxddy 

/za2 UN a2 VNA 
___ 

Y %92v) N, m d 

Thus, the properties of the form aN,m (*, *) are a straightforward consequence 
of the following lemma, which is well known in the case m = 1 (see [6, ?3]). 
Here, for the sake of completeness, we give a general proof for any odd value 
of the parameter m. 
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Lemma 4.1. For odd values o a positive integer m, thefollowing inequality holds 

for any polynomial (PN in PN(A): 

(4.6) II(PNIIo,A < ((PN, (PN)N,m < CII(NII1,A.' 

Proof. Since the quadrature formula is exact on P2N- (A), we see by using the 
expansion of (ON in the basis (Ln)o<n<N that it suffices to prove the result for 
(PN = LN. Next, we note that the polynomial 

YIN=-L ~(_)MN2(N-1)2.*.(N-m+ 1)2 (1d ) m (drnL) 

is of degree < 2N - 1 . Hence, applying the quadrature formula to Y/N and 
using its exactness, yields 

(LN, LN)N,m - IILNII ,A 

N2(N -1)2 ... (N -m+ 1)2 

> dL( (2ddmN (l )mdmLN) d(12)m/2dLN ||A) 

Since the nodes of the quadrature formula are the zeros of dmLN/dTm, we 
obtain 

(LN, LN)N,m 
- 

IILNIo,A = (121 1 
0, A 

1m+'N2( - 1)2. - (N- m +1)2 

(4.7)~~ ~~~~~~ d| 2m2 LN || 

To compute the right-hand side, we check by induction on m that 

(dSm (I1_42Om dSmLn 

= (-I)m(n - m+ 1)(n- m +2) (n +m - 1)(n +m)Ln. 

Integrating by parts gives 

(4.8) (LN, LN)N,m-IILNIIg A = (-.)m+l(N ..)(N) (N + 1) IILNII0,AS 

This proves the two inequalities of the lemma. 5 

Using Lemma 4.1 in (4.5) gives at once 

Proposition 4.2. The form aN, m (, *) satisfies the following properties of con- 

tinuity 

(4.9) VUN E PN9(Q), VVN E P(N(Q), aN,m(UN, VN) ? CIIUNII24QIIVNII2,n 

and of ellipticity 

(4.10) VUN E P??(Q), aN,m(UN, UN) > CIIUNIIQ- 

Remark. The equation (4.8) explains why we do not use the quadrature formula 
with m = 2 in our discretization. Indeed, if the same discrete problem were 
considered with m = 2, the ellipticity constant would tend to 0 when N tends 
to +oo, so that the error estimates could not be optimal, in contrast to the 
following results. 

The well-posedness result is now a straightforward consequence of Proposi- 
tion 4.2. 
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Theorem 4.3. For any continuous function f on Q, problem (4.3) has a unique 
solution UN in POO?(Q). 

We are now in a position to prove the error estimate. 

Theorem 4.4. Assume that the solution u of problem (2.1)-(2.2) belongs to 
H(a(Q) for a real number a > 2, and that the data f are such that the function 
(1 - X2)(1 - y2)f belongs to HP (Q) for a real number p > 1. The following 
error estimate between u and the solution UN ofproblem (4.3) holds: 

(4.11) IIU - UNII2,Q?< c(N>- IIuIIa, + N-PIIl( - X2)(1 _ Y2)f - lP n). 

Proof. Exactly as in ?3, we have 

(VN E NO(Q) (WUNEPOO(n) IIWN112,n 
(4.12) + sup (, WN)(f, WN)N,mr 

WSEP() IIWN11I2, } 

Choosing VN = lu cancels the second term and gives the estimate 

(4.13) IIU - VNI12,Q< cN 2-jjUII0,n. 

To estimate the last term, we use the exactness of the quadrature formula on 
P2N- 1 (A) together with the fact that Nm f belongs to PN-2(A) to deduce that, 
for any WN in POO?(Q), 

(f, WN) - (f, WN)N,m = (fS-Nmf, WN). 

Next, we recall that the mapping w | 4 (1 - x2)-1(l - y2)-'w is continuous 
from H02(Q) into L2( Q), so that the use of (2.12) gives 

(4.14) (f, WN) - (, WN)N,m< cNP11(l _x 2)(I -y2)f IIpiIIWNII22. 

The estimate (4.1 1) now follows from (4.12) to (4.14). O 
The arguments for proving the next result are exactly the same as for Propo- 

sition 3.7. 

Proposition 4.5. If the assumptions of Theorem 4.4 are satisfied, the following 
error estimate between u and the solution UN ofproblem (4.3) holds: 

(4.15) IIU - UNIIo,n< c(N-jIIuIIjj, + N-PII(l X2)(l -y2)fIlp,Q). 

5. CONCLUDING REMARKS 

We propose two methods for a model fourth-order problem with Dirich- 
let boundary conditions. Both of them can be easily extended to the three- 
dimensional case (see [1]). The first (?3) is of collocation type, hence it is very 
natural, but the error estimates cannot be optimal: one order of accuracy is 
lost in the square and two in the cube. The second method (?4) relies on the 
variational formulation of the problem and leads to optimal error estimates, in 
both cases m = 1 and m = 3. The two choices for m differ in the fact that 
the number of boundary terms in the discrete problem increases with m, at the 
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expense of the number of interior nodes. Numerical simulation (in progress) 
may decide what choice is better among these two optimal methods. 

The previous analysis is extended in [1] to inhomogeneous boundary condi- 
tions, i.e., when conditions (2.2) are replaced by 

(5.1) u = gj and ,0 = hj on Fj, J = 1, 2, 3, 4. 

Indeed, assume that the functions gj (resp. hj), J = 1, 2, 3, 4, belong to 
H3/2(Fj) (resp. H'12(Jj)), that they are continuous on rJ and differentiable 
in aji, and aj, and that the following compatibility conditions hold: 

gj(aj) = gj+i(aj), dgj (ai) = hj+?(aj), 
(5.2) dTj i=12 ,4 

dg-__ 
l dhi dhj__ JI,,34 hJ(aJ) = ---(aj), dTj (aj) = dd+l(aJ)' 

Then the discrete problem is set up as follows: find UN in PN(Q) satisfy- 
ing (3.3) (resp. the variational equation in (4.3)) together with the boundary 
equations 

(5.3) uN(x)= gJ(x) and OUN(x) = hi(x), XE "NJ, J = 1, 2, 3, 4, 

uN(aJ) = gj(aj), 
9 UN (ai) = hj(aj) 

(5.4) aOUN O2 UN _dhi 1 J 2,3,4. 
a (aj) = hj?i (aj), " (aj) 

- 
(ai) 

cinj+linan+ dTj (j 

It is proven in [1, ??3 and 4] that this problem has a unique solution and the 
error estimates of Theorems 3.6 and 4.4 are still valid in this case. 
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